有关于雷电电磁感应讲义
Posted:2009.11.23 Source:网络 Views:1974
雷电电磁感应讲义电磁兼容(EMC)是近年来发展很快并受到广泛重视的学科领域。IEC(国际电工委员会)对EMC的定义是:“设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物产生不允许的电磁骚扰的能力”。电磁骚扰(EMD)定义是:任何可能引起设备或系统性能降低或对有生命及无生命物质产生损害作用的电磁现象。电磁骚扰可能是电磁噪声,无用信号或传播媒介自身的变化。电磁噪声与EMD术语有相似的含义,指“一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。”电磁骚扰源分为自然骚扰源和人为骚扰源。
典型的自然骚扰源有:
1、 雷击电磁脉冲LEMP,又称大气噪声;
2、 太阳噪声,太阳黑子活动时产生的磁暴;
3、 宇宙噪声,来自银河系;
4、 静电放电ESD;
人为骚扰源较多,典型的有:
1、 电力网络中操作过电压SEMP;
2、 核致电磁脉冲NEMP;
3、 高压配电系统对地短路造成过电压;
其它家电、高频设备、电力设备、内燃机、无线电发射和接收设备、高速数字电路设备等,通过放电噪声、接触噪声、过渡现象、反射现象、非功能性噪声和无用信号等电磁骚扰的发生机理均会造成电磁干扰。
在IEC61312-1中对LEMP定义为:“作为干扰源的闪电电流和闪电电磁场。”GB50057-94局部修改条文定义为:“作为干扰源的直接雷击和附近雷击所引起的效应。绝大多数是通过连接导体的干扰,如雷电流或部分雷电流,被雷电击中的装置的电位升高以及磁辐射干扰。”LEMP属由于放电而产生的噪声,由于雷云之间或雷云与大地之间产生火花放电,往往伴随着急剧的电流、电压的瞬时变化,即di/dt或du/dt很大。与NEMP相比LEMP的电磁场强度、陡度和破坏范围都弱得多,但雷电这一大气物理现象,每次释放的数百兆焦尔(MJ)能量与足可影响敏感设备的毫焦尔(mJ)能量相比相差悬殊。1971年美国通用研究公司R·D希尔用仿真试验建立模式证明:由于雷电干扰,对无屏蔽的计算机当磁感应强度Bm=0.07GS时,计算机会误动作;当Bd=2.4GS时,计算机设备会永久性损坏。随着人类在1973年将1万个元件安置在1cm2面积上标志着进入信息时代,这个数值在逐渐变小。
特别是电子技术从本世纪六十年代的电子管元器件发展到八十年代大型集成电路以来,元件的耐受能量已由0.1~10J降至10―8~10―6J,因而设备损坏率骤然升高。各种设备、元件摧毁能量参见图1。
一位奥地利人对其所在地区自1960年~1992年间雷击损失保险理赔件数进行过统计,发现在这33年中,该地区因直接雷击造成的事故(火灾、建筑物破坏等)每年都约为100起左右,而电子设备的损坏却由1960年的931起上升到1992年的23768起![图2]
图3是慕尼黑TELA保险公司的损害分析,说明雷害损失从1978年到1994年的17年中上升了400%。而德国法兰克福ELELTRA保险公司的统计说明在1994年的灾害赔偿中雷击过电压损失占33.8%,为第一位(图4)。这种雷击灾害的损失与我国近年来的情况基本相同。我国城市中的雷击电子设备损害可占雷电灾害总损失的80%以上。鉴于上述原因,IEC61312-1
标准中“引言”称“鉴于各种类型的电子系统,包括计算机、电信设备、控制系统等(在本标准中称之为信息系统)的应用在不断增加,使本国际标准的制定成为必需。这样的信息系统用于商业及工业的许多部门,包括高资金投入、大规模及高度复杂的工业控制系统,对这样的系统从代价和安全方面考虑非常不希望由雷电导致系统运转的停顿。”
现代防雷技术是一系统工程
现代防雷技术涉及到许多行业,其中有使用维护系统、设计施工系统、设备生产制造系统、防雷装置生产、检测系统等。从技术角度上看也是一系统工程。系统结构愈合理,系统的各个组成部分(或要素)之间的有机结合就越合理,相互之间的作用就越协调,才能使整个系统在总体上达到最佳的运行状态。
比如防雷设计首先要从被保护物所在地理、气象环境出发,要从被保护物的重要性和复杂性以及雷击的后果严重程度出发。在设计中要考虑现有的保护装置的有效利用,要与供电系统的型式、暴露程度,所有线缆的架设,设备自身的耐压水平,选用防雷装置的特性及其有机配合,以及装设后对设备的正常工作是否产生不允许的影响,雷击发生后的反应和自复能力等等复杂的因素进行综合考虑,当然,还应考虑投资与效益的关系。
由于现代电子设备除受雷电干扰外,尚有大量的自然干扰源和人为干扰源,整个防护系统应从EMC这一主题开始进行。EMC有三项主要因素必须认真考虑:干扰源、耦合机制和设备的EMC水平或称抗扰性(抗扰性水平)。EMC干扰源、耦合机制和抗干扰措施综合示意图可参见图5。
图5 EMC干扰、耦合和抗干扰措施综合示意图
前面我们曾提到中国电力科学研究院许颖副院长的“三条防线”原则:(1)将绝大部分雷电流直接引入地中泄散;(2)阻塞侵入波沿引入线进入设备的过电压;(3)限制被保护物上雷电过电压的幅值。三条防线,互相配合,各行其责,缺一不可。鉴于有人一再片面宣传“传统防雷系统有缺陷”,“避雷针起到引火烧身的作用,”并由此推理推荐使用“消雷器”因而有必要介绍IEC61312-1。对外部防雷装置的功能评价。(见图6)
图6
在IEC标准中对进入建筑物的各种设施之间的雷电流分配进行了估算,认为全部雷电流有50%经外部防雷装置而安全导入大地,剩余的50%雷电流将平均分配到进入建筑物的各种设施上。这也为估算电源线、信号线上的过电压、过电流水平提供了理论依据。
在GB50057-94局部条文修订条文(征求意见稿)中特别指出:“一个信息系统可能设于这样的建筑物内,该建筑物按本规范第二章的规定不属于任何一类防雷建筑物,即不需要防直击雷,在这种情况下,当信息系统按本节第6.1.1条的规定(注:是否需要防LEMP,应从经济合理考虑,对投资与间接损失分析)需要防LEMP时,该建筑物宜按第三类防雷建筑物采取防雷措施。”
电磁耦合过程
IEC61312-1附录D关于雷电电磁耦合过程的全文如下:
D.1耦合机理:
为了实用目的同时为了使用带有集总参数的等效电路来进行研究,将耦合过程分为电阻性耦合、磁场耦合、电场耦合是有好处的。由于直接雷击而对信息系统的瞬态耦合可起因于下列不同的机理:
· 电阻性耦合(例如:由于接地电阻或电缆屏蔽层电阻引起的耦合)。
· 磁场耦合(例如:由于装置构成的环路或连接线的电感引起的耦合)。
· 电场耦合(例如:由于杆状天线引起的耦合)。
由建筑物内设备引起的电场耦合通常比磁场耦合小。耦合受以下因素影响:
· 接地
· 等电位连接
· 屏蔽
· 金属导体的走向与布局
D.2电阻性耦合:
当建筑物遭到雷击时,入地的雷电流通常在防雷装置与远处大地之间产生几百 KV量级的电压,此电压值取决于接地电阻值。这是与建筑物有等电位连接并接至远处大地的外来导体(如电线),有局部雷电流流过的原因。电缆屏蔽层流过的局部雷电流导致在内部芯线与屏蔽层间产生电压。
D.3磁场耦合:
雷电流不论其在导体中流过或在雷电通道中流过,都产生磁场,该磁场在远至100米的范围内,其强度正比于电流随时间的变化速率。磁场强度H(t)是与传导雷电流i单一长直通路中心间的距离r成反比。
H(t)=i(t)/2πr
某些情况下可应用这一公式作简单的估算,但在大多数情况下应对磁场作详细的分析。在磁场与导体有关联的地方,它就在环路(由这些导体构成)中产生与dH/dt成正比的电压。这就称之为磁感应。
D.4电场耦合:
在形成主放电之前的瞬间必须考虑在整个雷击区(由雷击点起最远大约100米范围)内达到空气击穿放电场强(在500KV/m的范围内)的各个场强。主放电形成后,就必须考虑电场的衰减消失以及电场变化率,其值在500(KVm)/μs范围内。
雷电流电磁耦合过程分析
做为干扰源的雷电电流和雷击电磁场主要是通过路和场二种形式耦合干扰信息系统的电子设备的。
其一、通过导线传导,即通过设备的信号线、控制线、电源线等侵入设备,统称传导干扰。
其二、雷击周围空间存在的电场和磁场,会对邻近设备产生干扰,叫近场耦合干扰。当雷击能量以电磁波的形式向远处传输,从而干扰远处的设备时,称为远场辐射干扰。这两种形式可称为辐射干扰,即通过场的干扰。
1.电流耦合:
当雷闪击在接闪器(或建筑物的金属构件)上,虽然接闪器、引下线和接地装置的阻值很小,但由于雷电流幅值大,陡度(di/dt)大,会在瞬间使引下线和接地装置的电位骤升上百千伏(对远处大地一零电位而言)。如图7所示,当di/dt=100KA/μs时,在图中所示的回路上产生的感应电压Ust=200KV。同理,当有屏蔽层的电缆流过雷电流时,di/dt和屏蔽金属层的电阻也会使芯线与屏蔽层间产生感应电压。
在有相当高的电位差的引下线与建筑物内金属线缆之间、在屏蔽电缆的外皮与芯线之间、在不同的接地装置之间均有可能发生放电现象,这种现象称为闪络,跳击或反击。
2.磁场耦合和电场耦合:
雷电通道中(或接闪器、引下线的导体中)的雷电流产生的电场和磁场会在闭合环路中产生感应电压,从而对环路(及环路中的设备产生干扰。在场的干扰中可分为近场(感应场)和远场(辐射场)当干扰源与设备的间距r相对于干扰信号的波长λ很大(r>λ/2π)时,干扰源的性质表现为辐射干扰源,其场的性质是辐射电磁场,其特点是电场和磁场同时存在,它们的比值(电磁波的波阻抗)Z=E/H=377Ω。当r<λ/2π时为传导干扰源,其场的性质表现为传导干扰源,其场的性质主要表现为电场或主要表现为磁场,视干扰源的性质而定。高电压,电流小的源,其场主要为电场、Z>377Ω;电压低,电流大的源,其场主要表现为磁场,磁场的Z<377Ω。电场或磁场都属于近场(感应场、似稳态场、准稳态场),其干扰频率一般都比较低。
当空气击穿放电的电场强度值在500KV/m范围时,在从雷击点至100m的范围内,可能受电场影响耦合产生过电压,虽然此时雷击主放电尚未发生。在雷击发生之后,雷电电场衰减消失,这时电场的变化率在500(kV/m)/μs范围内仍起耦合作用。
3.电容耦合:(电场耦合)
任何两块金属之间都存在着电容,其间距越大,电容越小;金属块的尺寸越大,电容越大。雷电电场可通过场的形式(如上一节所述)耦合干扰设备。也可以通过流经的导体构成骚扰源电路干扰接收线路。由电容耦合在接收电路上产生的电压U2与雷电流流过的电路上电压U1关系式如下:
U2= Z2/(Xcm+Z2)*U1,说明电场耦合量随频率升高而增加。
4.横向干扰(线间)
骚扰电流在导线上传输时有共模方式和差模方式两种方式。IEC把在一组有效导体中任意两导体之间的电压称为差模电压或对称电压,也叫为横向电压,如图10所示的VL或VQ。差模电压是由差模电流流过而产生的,而差模电流则可能因雷击造成在不同导体(如相线、中性线)流过大小相同,方向相反的电流。此外,当一次雷击过程中有多次闪击时它们有大小和发生先后的区别,因此在不同的导体上也可能产生电位差而侵入设备,这种横向干扰又称错相位雷击。相对于横向干扰的另一种形式为纵向干扰,又称共模干扰或不对称电压,是指某一导体和所规定的参比点之间(往往是大地或与大地连接的机架)出现的相量电压的平均值,也可以说共模干扰是出现于导线与地之间的干扰,常是因地电位升高引起的。
综上分析,雷电可能闪击到建筑物上,除部分雷电流沿接地装置泄散外,尚有部分雷电流可沿进入建筑物的各种金属管线侵入。在高压输电线路上发生雷击时,线路上产生的过电压也会沿线路传送,直到变压器的低压侧,造成设备的损坏。此外,可能通过各种耦合机制使设备误动作或损坏。
雷电防护区
按EMC原理将建筑物按需要防护的空间由表及里划分为不同的雷电防护区(LPZ),有如下实际意义:
· 可以计算出各LPZ内空间雷击电磁脉冲的强度,以确认是否需采取进一步的屏蔽措施。
· 可以确定等电位连接的位置(一般是各LPZ区交界处)。
· 可以确定在不同LPZ交界处选用电涌保护器的具体指标。
· 可以选定敏感电子设备的安全放置位置。
· 可以确定在不同LPZ交界处等电位连接导体的最小芯线截面。
IEC61312-1将LPZ分为以下各区:
LPZ 0A:直击雷非防护区:本区内的各物体都可能遭到直接雷击和导走全部雷电流,本区内的电磁场没有衰减,属完全暴露的未设防区。
LPZ 0B:直击雷防护区:本区内的各物体很少遭到直接雷击,但本区内电磁场没有衰减,属充分暴露的直击雷防护区。(本区一般在外部防雷装置接闪器保护范围之内,从理论上本区不可能遭受直击雷,而事实上有这种可能)
LPZ 1:第一屏蔽防护区:本区内的各物体不可能遭到直接雷击,在本区内所有导电部件上的雷电流比LPZ 0区内的电流进一步减小。本区内的电磁场因屏蔽措施而有所衰减。(本区一般指在钢筋结构的建筑物内)
LPZ 2:第二屏蔽防护区:为了进一步减小导电部件上的雷电流和电磁场而引入的后续雷电保护区。
LPZ n:第n屏蔽防护区:需要进一步减小雷击电磁脉冲以保护敏感度水平高的设备的后续雷电保护区。
对一座建筑物,可以分为若干个雷电防护区,见图11,此图分析了LPZ的划分并指出了做等电位连接的位置。
等电位连接和共用接地系统
在防雷装置的设置上人们往往比较注意外部防雷装置和内部的电涌保护,容易忽视等电位连接在雷电防护的重要作用。有时还特意设置单独的接地装置,单独的引下线,还错误的提出“共网不共线,分类接地网,不串不共用,一点接地法”的口号,一方面给设计施工增加了难度和增大了开支,另一方面违背了等电位的基本原理,会给被保护设备以及人身安全造成潜在的威胁。
1、基本概念
防雷等电位连接——是将分开的导电装置各部分用等电位连接导体或电涌保护器(SPD)做等电位连接。它包括在内部防雷装置中,其目的是减小建筑物金属构件与设备之间或设备与设备之间由雷电流产生的电位差。防雷等电位连接区别于电气安全的等电位连接,最主要是将不能直接连接的带电体通过电涌保护器做等电位连接。
等电位连接网络——是对一个系统的外露各导电部分做等电位连接的各导体所组成的网络。
共用接地系统——是一建筑物接至接地装置的所有互相连接的金属装置(包括外部防雷装置),并且是一个低电感的网形接地系统。
接地基准点——是一系统的等电位连接网络与共用接地系统之间唯一的一点连接点。
信息系统的等电位连接:
各种形式的电子系统的应用在不断增加,这些系统包括计算机、通信设备、控制系统等,在国际电工委员会的标准中将它们统称为信息系统。对信息系统的外露导电部分应建立等电位连接网络,原则上一个等电位连接网络不需要连到大地,但通常所考虑的所有等电位连接网络都会有通大地的连接。
信息系统的各金属组件(如各种箱体、壳体、机架)与建筑物共用接地系统的等电位连接有两种原则方法,见图13中的h和g。
图13中的h为S型等电位连接网络,即星形结构或通称为单点接地;g为M型等电位连接网络,即网形结构或通称为多点接地。
当采用S型等电位连接网络时,该信息系统的所有金属组件,除等电位连接点外,应与共用接地系统的各组件有足够的绝缘(>10kV 1.2/50μs)。通常,S型等电位连接网络用于相对较小、限定于局部的系统,所有服务性设施和电缆仅在一点进入该信息系统.本网络应仅通过唯一的一点(即接地基准点 ERP)组合到共用接地系统中去。在此情况下,在各设备之间的所有线路和电缆应按照星形结构与各等电位连接线平行敷设,以避免产生感应环路。由于采用唯一的一点进行等电位连接,故不会有与雷电有关联的低频电流进入信息系统,而信息系统内的低频干扰源也不会产生大地电流。做等电位连接的这唯一的点也是接电涌保护器以限制传导来的过电压的理想连接点。
如果采用M型等电位连接网络,则该信息系统的各金属组件不应与共用接地系统各组件绝缘。M型等电位连接网络应通过多点组合到共用接地系统中去。通常,本网络用于延伸较大和开环的系统,而且在设备之间敷设许多线路和电缆,服务性设施和电缆在几个点进入该信息系统。本网络用于各种高频也能得到一个低阻抗网络。这种网络所具有的多重短路环路对磁场将起到衰减环路的作用,从而在信息系统的邻近区使初始磁场减弱。
在复杂系统中,两种型式(M型和 S型)的优点可组合在一起。
a—防雷装置的接闪器以及可能是建筑物空间屏蔽的一部分(如金属屋顶);
b—防雷装置的引下线以及可能是建筑物空间屏蔽的一部分(如金属立面、墙内钢筋);
c—防雷装置的接地装置(接地体网络、共用接地体网络)以及可能是建筑物空间屏蔽的一部分(基础内钢筋和基础接地体);
d—内部导电物体,在建筑物内及其上的金属装置(不包括电气装置),如电梯轨道,吊车,金属地面,金属门框架,各种服务性设施的金属管道,金属电缆桥架,地面、墙和天花板的钢筋;
e—(局部)信息系统的金属组件,如箱体、壳体、机架;
f—代表局部等电位连接带(单点连接)的接地基准点(ERP);
g—(局部)信息系统的网形等电位连接结构;
h—(局部)信息系统的星形等电位连接结构;
i—固定安装的Ⅰ级设备(引入PE线)和Ⅱ级设备(不引入PE线);等电位连接带:
k—主要供电力线路的、供电力设备等电位连接用的总接地端(总接地带、总接地母线、总等电位连接带)。也可用作共用等电位连接带;
l—主要供信息线路和电缆用的、供信息设备等电位连接用的等电位连接带(环形等电位连接带、水平等电位连接导体,在特定情况下:采用金属板)。也可用作共用等电位连接带。用接地线多次接到接地系统上做等电位连接(典型值为每隔5m连一次);
m—局部等电位连接带:1-等电位连接导体,2-接地导体,3-服务性设施的金属管道,4-信息线路或电缆,5-电力线路或电缆;
Q—进入LPZ 1区处,用于外来服务性设施的等电位连接(管道、电力和通信线路或电缆)。
2、等电位连接的设置位置
图11在标明LPZ划分的同时说明了做等电位连接的位置。在《低压配电设计规范》GB50054-95中从电气安全的角度提出总等电位连接,局部等电位连接和辅助等电位连接的概念和方法。鉴于GB50054-95系强制性国标,是建筑电气设计必须遵循的,因此,将防雷等电位连接与之结合是有益的。
1.总等电位连接(MEB):GB50054-95第4.4.4条规定总等电位连接的导电体有:PE、PEN干线;电气装置接地极的接地干线;建筑物内的水管,采暖和空调管道等金属管道(原文中含煤气管,国际标准中有规定煤气管道不应直接连接),条件许可的建筑物金属构件等导电体。上述导电体宜在进入建筑物处接向总等电位连接端子。等电位连接中金属管道连接处应可靠地连通导电。
内部防雷要求将外部防雷装置的外敷引下线(利用建筑物内垂直钢筋为引下线的已含在建筑物的金属构件中,无需再做连接)在地下室或靠近地平线处与总等电位连接端子连接。这样可以消除在建筑物上落雷时,雷电流I在接地电阻上产生大幅值的电压降IR,避免因引下线与建筑物内金属部分或人体之间可能出现的危险的电位差而引起跳击。
电源线路和信号线路上因雷电感应产生瞬态过电压,为保护信息设备,也要在入户处做总等电位连接。由于电源线路上的带电导体和信号线路的芯线不能用导线直接连接,此时应用电涌保护器做等电位连接。
原则上等电位连接的位置应在雷电防护区的交界处,即进入建筑物入口处,但有时被保护设备不一定会恰好设在交界处而是在其附近,这时当线路能承受发生的电涌电压时,SPD可安在被保护设备处,而线路应在交界处做一次连接。
在大建筑物内可能有多个电源进线和多个接地母排(等电位连接带),这些接地母排应互相连通,以实现全建筑范围内的等电位连接。在防雷等电位连接中指LPZO与LPZ1区交界处的连接。
2.局部等电位连接(LEB):在高层建筑物内装设电子设备,使用“共网不共线”,即使用一根设备专用引下线接至共用接地装置(网),会产生什么效果呢?由表2可以得知一根专用接地线在高频下其阻抗为:
表2 25mm2铜导体在自由大气中的电阻和电抗
将信息系统的工作频率1MHz,专用引下线18m的R、ωL代入上式,阻抗高达近200Ω,因此当这个接地装置的阻抗既便很低(如小于1Ω)也是毫无意义的。
当在信息系统上安装电涌保护器时,在电涌保护器承受雷电流冲击而对地泄放时,被保护的信息系统设备绝缘承受的电涌电压为电涌保护器上的残压和其连接线上的电压降之和,即:
U=Ures+L(di/dt)
其中残压Ures与电涌保护器的性能有关,di/dt为雷电流的陡度,L与专用引下线的长度成正比,专用引下线过长,整个U值将偏大,而使设备损坏。因此在IEC60364-5-534中规定,电涌保护器连接线的全长不宜超过0.5m。而为了达到这个要求,则必须在设备所在楼层按S型或M型设接地基准点(ERP)或环型接地母排,并将其与建筑物主钢筋连接,达到局部等电位连接。在防雷等电位连接中指LPZ1和LPZ2区交界处的连接。
3.辅助等电位连接(SEB):GB50054-95第4.4.5条规定:当电气装置或电气装置某一部分的接地故障保护不能满足切断故障回路的时间要求时,尚应在局部范围内作辅助等电位连接。当难以确定辅助等电位连接的有效性时,可采用下式进行校验:
R= 50/Ia
式中:R---可同时触及的外露可导电部分和装置外可导电部分之间,故障电流产生的电压降引起接触电压的一段线段的电阻(Ω)。
Ia---切断故障回路时间不超过5秒的保护电器动作电流(A)。
辅助等电位连接在防雷等电位连接中主要指LPZ2和LPZ3交界处以及后续雷电防护区的交界处的连接。
3、共用接地系统和电子设备的独立接地
电子设备接地技术是一探讨多年的问题。在工程中经常遇到的有防雷接地、交流工作接地、屏蔽接地、防静电接地、安全保护接地、直流工作接地(信号地、逻辑地)等。其作用可分为保护性接地和功能性接地二大类。目前人们最关心的是对功能地的保护。在电子信息设备的电路中,输入信息、传输信息、转换能量、放大信号、逻辑运算、输出信号等一系列过程都是通过微电位或微电流快速进行的,且设备之间常通过互联网络进行工作,除需稳定的电源外,尚需一稳定的基准接地点,又称为信号参考电位。如使用悬浮地不易消除静电,易受电磁场的干扰而使参考电位变动。以往在实际工作中大量采用TN-C系统供电(俗称零地合一),50Hz的工频干扰经由设备外壳,元件底板串入信息系统,使功能性(直流)地要与保护性地隔离,对防雷接地更是谈虎色变要避而远之。然而随着建筑物面积和高度的增大,随着城市建筑的发展,功能性地与保护性地的分离已越来越困难,同时使用多个接地系统必然在建筑物内引进不同的电位导致设备出现功能故障或损坏。因此采用等电位连接和共用接地系统后,使讯号接地不形成闭合回路,共模型态的杂讯不易产生,同时可消除静电和电场的干扰,不易受磁场干扰。共用接地系统已为国际标准采用,并逐步在我国国家标准中推广。
1.供电系统的说明:在低压配电系统中常用的型式有
TN型:系统中,电源有一点与地直接连接,又可分为:
TN-C:在此系统中,整个中性线(N)与保护线(PE)是合一的。
TN-C-S:在此系统中N线与PE线只有在变压器电力系统接地点连接(即PEN线),进入建筑物后N与PE不可连接。
TN-S:在整个系统中N线与PE线是分开的,N线不接地。
IT型:在此系统中,电源与地绝缘或一点经阻抗接地,电气装置外露可导电部分则接地。
TT型:在此系统中,电源有一点与地直接连接,负荷侧电气装置外露可导电部分连接的接地极和电源的接地极无电气联系。
在《电子计算机机房设计规范》GB50174-93第6.1.9条规定“电子计算机低压配电系统应采用频率50Hz,电压220/380V,TN-S或TN-C-S系统”。在GB50057-94局部修订条文(征求意见稿)中也提出“当电源采用TN系统时,从建筑物内总配电盘开始引出的配电线路和分支线路必须采用TN-S系统”。这是由于在一建筑物内采用共用接地系统之后,若采用TN-C供电系统,会产生连续的工频电流及其谐波电流对设备的干扰。干扰来源于TN-C系统中“中性导体电流”(在三相系统中由于不平衡电荷在PEN线上产生的电流)分流于PEN线、信号交换用的电缆的屏蔽层,基准导体和室外引来的导电物体之间。而采用TN-C-S或TN-S系统,这种“中性导体电流”仅在专用的中性导体(N)中流动,不会通过共用接地系统对设备产生干扰。当然,在实际工程中常由于接地方法有问题可能导致中性线(N)与地(PE)接触,使系统全部或部分又转回为TN-C系统,再度产生干扰,这一点只能依靠检测才能找出故障的起因。
2.独立接地不利于过电压保护
以往采用电子设备的独立接地在实践中确已消除了连续的低平噪声,但也有突然发生的大灾害事件。分析这些事件得出,由于采用独立接地所以在雷雨天气条件下会有很高的电压加在计算机等信息设备上,而产生高电压的原因包含了直接雷击、雷电波沿线路侵入和雷电感应。
当雷电直击建筑物时,建筑物接地装置和与之连接的金属构件电位迅速抬高,相对而言,由于电子设备采用了独立接地,其电位未明显抬高,这样存在一电位差和设备与建筑物金属框架之间所存在的电容,使设备元件上所感应的电压高于其击穿电压。在雷云电荷的感应下,有时并不发生雷击也会由于建筑物的感应电压通过上述形式影响到设备的元件。如果采用共用接地系统,电位差的问题便得到了解决。
3.瞬态共地的危害
为了避免雷害和干扰,我国一些电气安装图提出在防雷地、保护地和交流地与电子信息设备的独立接地之间串连一FS-0.22型避雷器,国外产品中也有类似用途的放电间隙。(国外产品的主要用途是用于煤气管道与共用接地的连接)。采用在两种地之间串接能在瞬态导通的器件其目的是:在正常工作状态下两种地是分开的,不会有泄漏电流对电子信息设备工作时必需的高频信号接地点零伏参考电位产生干扰;而当雷击发生时,将使用FS-0.22避雷器将两种地瞬态导通以达到等电位。这种瞬态共地的作法不能保证电子信息设备的安全,相反却能招致雷击损坏危险。原因是在电源线上(含相线与中性线)可感应雷电瞬态过电压并传导到电子信息设备内,当这种瞬态过电压冲击发生后,即便FS-0.22工作导通,其残压也在上千伏以上,加上长长的连接导线上的电压降,仍会对电子信息设备造成危害。这种瞬态共地在一些规程或图册中称为联合接地,有些标准出于在实际中无法实现独立接地而不得不采用联合接地的考虑,还不恰当的将联合接地的接地电阻值规定为不大于1Ω。
4、等电位连接的材料和方法
IEC60536-2对等电位连接导体提出如下基本要求:
1、 耐受由于设备内部故障电流可能引起的最高热效应及最大动应力;
2、 具有足够低的阻抗,以避免各部分间显著的电位差;
3、 能耐受可预见的机械应力,热效应及环境效应(含腐蚀效应);
4、 可移动的导体连接件(铰链和滑片等)不应是两部分间唯一的保护连接件,能满足(1)、(2)、(3)条者除外;
5、 在预计移开设备某一部件时,不应切断其余部件的保护联结,这些部件的电源事先已切断者除外;
6、 当耦合器或插头插座能控制保护联结和向设备组件供电的所有导体的开断,保护联结应在供电导体断路(或接通)之后(或之前)切断(或接通);
7、 保护联结导体应宜于识别;
等电位连接可以使用焊接、螺栓连接和熔接三种方法。当使用螺栓连接时要考虑螺栓松动的问题,一般应用铜鼻将连接线焊牢后栓紧。
连接材料一般推荐使用铜材,是因其导电性能和强度都比较好,使用多股铜线的弯曲也比较方便。但使用铜材与建筑物内结构钢筋连接时,可能会因铜的电位(+0.35V)与铁的电位(-0.44V)不同而形成原电池,产生电化学腐蚀。因此在土壤中(基础钢筋处)连接,要避免使用裸铜线,最好使用同一金属(钢材)为宜。
等电位连接导体的尺寸与其所在位置,与估算流过的雷电流的量相关。为了满足等电位连接基本要求,IEC标准规定了各种材料的最小截面为:
直击雷引下线(mm2):铜16、铝25、铁50 ;
LPZ0与LPZ1区(mm2):铜16、铝25、铁50;
LPZ1与LPZ2区(mm2):铜6、铝10、铁16 ;
等电位连接端子板(母排)的最小截面不小于50mm2(铜或镀锌钢板)。
在实际工程中,为了醒目和便于检测维修,等电位连接线应使用外皮为黄绿相间的线缆,并在工程完成后使用专用仪器对等电位连接的有效程度进行测试。《等电位联结安装》(97SD567)标准图参考德国标准提出3Ω的阻值要求,实际上所测的阻值主要为接触电阻。
在实施等电位连接的平面(如计算机房防静电地极下),在敷设接地母排后,应将母排(铜带或扁钢)就近与建筑物内钢筋焊接,母排与主钢筋焊接的间距一般不应大于5m。
六、其它防护技术
1.在中国工程建设标准化协会”建筑与建筑群综合布线系统工程设计规范“CECS72:97中对布线与干扰源的最小间距做出了隔离的规定。
2.滤波技术,使用滤波器是由电感、电容、电阻或铁氧体器件构成的频率选择性二端口网络,可以插入传输线中抑制不需要的频率进行传播。
3.电涌保护器(SPD):在培训班教材之四中专门介绍。
4.电气隔离技术:利用磁隔离(隔离变压器、电源变压器、各种电源电流互感器、调制解调式隔离放大器)的方法和光隔离(光电开关、光电隔离器、光缆、光触发可控硅、模拟信号光电隔离装置等)方法,使信息传输的路经在电气上隔离,使隔离前后的两部分线路之间无电气上的连接,从而依靠非电的方式,即用磁或光在信号传输中起作用。